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ABSTRACT

Linear search algorithms are developed for use when minimizing

logarithmic barrier fun.tions, whose one-dimensional La1.,tvior is in

general modeled poorly by the low-order polynomial approximations

of standard linear search procedures. The new methods are based on

special approximating functions with a logarithmic singularity, and

are designed to utilize the same information as procedures based on

quadratic or cubic polynomials. Although the parameters of the special

approximating functions depend nonlinearly on the available data, the

determination of the psriameters requires little additional work in

compariaon with polynomial fits. Use of the special approximating

functions has led to a significant improvement in efficiency when

minimizing logarithmic barrier functions, where efficiency is measured

by the number of function (or function and gradient) evaluations

required for termination of each linear search.
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r•: 1. Introduction

An essential part of many algorithms for minimizing a function

of several variables is the determination of a positive step to be

taken from an initial point along a given search direction. At the

new point, the values of the function and possibly its derivatives

are required to satisfy some specified conditions with respect to

these quantities at the original point. For example, in theoretical

presentations of such algorithms, it is often stated that the step

taken should minimize the function along the direction of search;

the desired step in this case will be denoted by a*, and is defined

by:

P(x + cx*p) min P(x + ep),

where x is the initial point, p is the search direction, and P(x)

is the fuanction to be minimized.

However, in most applications the conditions that define an

acceptable step are less stringent, and will be satisfied by an approx-

imation to C& (see Osborne, 1972; Gill and Murray, 1974). An efficient

method for obtaining such a step can be based on an iterative procediu'e

to determine c*, by generating iterates only until the required con-

ditions hold. Thus, whatever the criteria to be satisfied, the

underlying iterative process remains the same; what varies is the

number of elem(onts in the sequence that are actually computed.
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The discussion to follow will be concerned only with the procedure

by which successive estimates of the desired step length are generated,

and not w!.th the termination criteria. The terms "linear search"

and "one-dimensional minimization" will be used to denote the iterative

procedure co'nimon to all such algorithms, and do not imply that a

close approximation to o• is to be obtained.

The linear search procedure is of crucial importance to the

success of most computational algorithms for unconstrained minimization;

cousequently, there has been considerable work on devising efficient I
and reliable methods for one-dimensional minimization, and on the

careful implementation of such methods as computer routines (see Brent,

1973; Gill and Murray, 1974). These general-purpose linear search

algorithms combine successive low-order polynomial interpolation or

extrapolation with safeguards to ensure convergence and numerical

stability. The performance of a linear search procedure is normally I
measured in terms of the number of function, or function and gradient.

evaluations required to locate a point that satisfies the prescribed

termination criteria. When executing a linear searrch with respect

to a particular nonlinear function, the efficiency of the algorithm

will thus depend on the adequacy of the polynomial approximation to

the given function. For minimizing general functions with no a priori

information about the nonlinearitie6, linear search procedures based

on polynomial approximation may be the most efficient, although

inevitably the non-polynomial-like behavior of some functions will

necessitate a large number of successive polynomial. fits (and, hence,

evaluations of the function).
A1
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Thts paper will be concerned with the design of' ine!.ir seareh

"algorithms for a particular class of nor(linear functons--Jogarithmile

barrier f'unctions. A linear search with respect to these functions

is required in several algorithms for constrained minimization, and

yet their behavior is in general modeled poorly by low-or,. r polynnmials.

1- The Logarithmic :arrier ction

Barrier function methods were first introduced as a technique

for transforming a nonlinearly constrained minimization problem into

a sequence of unconstrained problems, where feasibility with respect

to the problem constraints is maintained throughout (a full description
is given in Fiacco and McCormick, 1968). Th.e only barrier function

to be considered here is the logarithmic barrier function, defined

as follows: corresponding to thie nonlinearly constrained minimization

problem

minimize F(x), x C En

(2.1)

subject to c 0(x) >O, i -, 2, ... , 2,

where F(x) and (c[ (x)) are prescribed nonlinear functions), the

lorrnrvthmic btrri.er funntion is g[ven by:

I3(x, r) - 7x r in(c )

wi'here tYe positive vv~.3r is termed the 'ý!,rrlor parameter."

7,
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NOW

Interest in barrier fuiction methods has waned in recent.

years, due to the development of more promising algorithms, many

of which are based on extensions to t•ie quadratic penalty function

(see Fletcher, 1974i for a discussion of penalty functions, see Fiacco

and McCormick, 1968). However, nearly all the more recent algoritlms

are non-feasible point methods, and hence are unsatisfactory for

problems in which the objective and/or constraint functions are i.ll-

defined or undefined outside the feasible region. In addition, non-

feasible point methods may have other disadvantages. For example,

the transformations employed may introduce spurious non-feasible

solutions; furthermore, if such an algorithn' is terminated prt•maturely,

it often fails to provide a useable solution.

Many of the algorithmic developments based on the quadratic

penalty function can be mirrored by utilizing the logarithmic barrier

function. Two such suggestions have been made by Osborne (1972) and

Murray and Wright (1976). For feasible point algorithms, the logari-

thmic barrier function) which has the virtue of maintaining feasibility,

can often serve as a convenient "merit function" for a linear search,

regardless of how the search direction is obtained. Therefore, it

is worthwhile to consider how to exploit the special properties of

the logarithmic barrier function in the design of a linear search

algorithm.

The inadequacy of linear search procedures based on polynomial

fits for minimizing barrier functions has been discussed by Fletcher

and McCann (1969), Murray (1969), Lesdon et al. (1973), and Ryan (197)4).
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The ,e'f iri:l Ch,,r ., tcreri:,tAl of ai barrier f,,A t[:.r. 1 i, ' i , nrit: I

"-it the houa1•iry of' the fen,,tu]e re-i.n,:n); :•Ilrce polynomir Ls prcl lde

n poor approximation cGo a fu'wtion with n singuln ity, the general I

approtch has been to ;'uge;,et mite rnaLive .ppproxima t Li'c t ic t.

with the came kiid of' ;i-zuaririty Bs the barrier fulctioc Th1,

minimum of the spec inl appro-imatirig ftunction can , taken as aUr

estimate of the minimum of the barrier function, to be tised within

the linear search procedure in exactly the same way as the estimated

minima of polynomial approximations. However, it may not be possible

to determine explicitly the coefficients and/or the minimum of thý.

new approximating fCunction, in contrast to these calculations for

polynomials.

5. Fitting of Special Dounct is

5.1. Disc ua iin

The special functions u4 oc considered are designed to contain

a single logarithmic singularity. This restriction to a particular

barrier 1tnction contrasts with the general approach taken by Lasdon

et al. (1973), where a special function is developed by the applica-

tion of the form of the barrier function to linearized approxImations

to the objective f.rnction and the con&.traints. The approach taken

hre allows a much simpler solution to the problem,, where the known

form of the singularity is directly exploited. A single function is

used to approximate the behavior of the barrier function along the

search direction, and it, is not necessary to make separate approxima-

tions to the objective, function and the constraint functions.

5



71he lagaritb17ic barrier fr~'Jxn -,a ft*y

feasible poln*-, nni !s .:.,e c-r!"•?r r'

along a particular direction. Theref-ore, o.ny •at .. s nre

considered in fitting the approximati!ý ,-,Eons, t.r;e ,.h•n a'a

to be used will be values of the barrier zrnct'o- anrd ½2s 'rAisint.

it will be asoumd thst we se-_k an epprrzimi t n to the

minimum along the search direction of

2

B(x, r) F- r )

where the barrier par'imeter, r, ta known and fixed throurtout the

linear search. The special functions to be considered are the follow-

ing, where. the parameter e repr-.,sents the one-dimensional variation

along the search direction:

(a) a linear function plus a logarithmic singularity, of the form:

fL(e) = • + 1e - r In(d - 9);

A]
(b) a quadratic furction plus a logarithmic singularity, of the form:

fQ(8) + O + Ge 2  r In(a . )

Thses formulations attribute all the singular behavior to

one lonation (0 •); in fact, the singularity displayed by a

barrier function depends in general upon the first constraint zero

! I;A I
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encour'tred along, n ri!ten direction, and -ýeros that rnby occur beyond

Vte first are trrelevont, ThLs behavior becomes especi•ly marked for

small values of the barrier parAmeter, when the constraint functions

bounded away from zero have aNbm)st no influence on the barrier

function, and the nearest constraint has influence only very close

to its zero along the given direction. A smooth function with a

suitable damped singularity should, therefore, be an excellent model

of a barrier function close to the boundary of the feasible region.

3.2. inea Funtio~n Plus Logarithmic Sinrularity

The special function to be fitted is of the form:

f a+ te r An(a - e).IL
Differentiating fL with respect to e gives:

ft +
L

and

r
fL ( 0E ) 2

d[Lnce the barrier function is decreasing at e = 0, this same condi-

tion will be required of fL' so that

I(0) b+ r< 0.

7
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The slnmgularity, d, Is assmezd to ýe po-itiy-f rtep atlo"

-I

the n.iurmrit directi:ni, andJ, therero.ret. -zý G

A stationar-I point of fL ocecur- at = wh thst -•

or

b + " 0
d -

so that

d + rl.

The expression for 9* is equal to the value of fL(O) tLmez

IM, and since and fI((i) are negative, 0- m±t bi.

positive. f" is everywhere positive, so that the stattonary Doint
L

must be a minimum of f

In order to specify the function f,, three independent pieces

of information are required about the behavior of the furntion to

be fitted along the search direction; fL will therefore be used in

circumstances where a parabolic fit would normally be carried out to

rminimize a general function. Figure 1 illustrates a barrier function

and its approximations by the function fI. and a parabola, both using

the same data. It is clear that the special function gives a more

accurate prediction than the parabola of the minimum of the barrier

. "function.

RP' ,, .
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'Die special function fT will be fl Lted 'vith the same sets

of data used by a typical parabolic 1ine search, namely: (1) one

function value, the corresponding, projected gradient, and a second

function value; (2) three functicn values. In the followIL discus-

sion, fI will denote the function value at ., and [,i is the

corresponding value of the projected -radient.

Case 1. Two function values. on _•,n

The three unknown pnr'ameters of CL -- a, b, and d -- must oe

solved for in terms of the known values. Assuming that 62 >

the equations specifying f are:
L

(A) fl + bOi r r n(d -e)

r

(B) 9

(C) f A- r In(

(C 2  a +bO2 2.~~~/).

There is no loss of generality in assuming that 0 = 0, so

that from (A) and (B) we obtain:

a f + r An(a)

and

b g

410
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Subat itutin., these values into (C) yields:

f f + r . () P (g " - r ( -

or, after re-Arrninwz:

(n5.71) ~r(0G2 1 -( 2 -C)

A

If k- value d, the location of the siikgularlty, can be found

which satisfies (3.i), the val'ieo a, b, end 0* can then be computed

from the previously derived r1atLon;,,,ip,.

Consider (3.1) as a nonlinear equation in terms of the fuiictlor

d

whe're

1.

r' 2 1 e 2g)

A

The problem to 1,e snolved then hecomes that of r finding a solution d

v sa( i0fy

. 0

i-

---------------------------
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Because 2 is feasible, the value of the sirgularity, S,
2

must lie in the interval (9, a). Vhe function O.l(d) has the

following propertieu:

S as2 +

¢l-ak as d-.;

4i' > 0 for all finite d;

1!

as d-. +2 4|

0a3 d-;

snd

(t" < 0 for all finite d.

These relations imply that there is a unique zero of 1, in (e

provided that kI> o, I.e., (f2 - l)/0 2 > gl" This requirement

means that the function value at 9 must be larger than the linear
2j approximation at 1 would have predicted, i.e., f2  must lie in

the shaded region of Figure 2.

Although the numerical solution of the equation 0l(d) - 0

would yield the desired value 4', 1 is an ill-behaved function,

unsuitable for the usual zero-finding techniques such as Newton's

method. Figure 3 illustrates the behavior of I"

12
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FigureP
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An attempt to apply Newton's method in Region I would cause

very slow convergence to the zero, although all estimates would

undershoot and hence could not diverge. In Region II, N'wton's

method might easily yield an estimate to the left of 92, and safe-

guards would need to be incorporated to prevent divergence.

To avoid these difficulties, the problem of solving 1 (d) = 0

c&n be transformed into an equivalent problem that is easy to solve.

If we define a new variable y - 62 /d, so that 0 < y < 1 for the

admissible range of d, the equation 0l(d) 0 can be written in

terms of y as

-n(l y) = -y - k1 .

Taking expqnentials of both sides gives the equation

-k1

and the value 9 which satisfies this equation is a zero of a new

function,

-k -(Y = -y e-y e

DifferentiatirW with respect to y gives:

-k
?' -. L e-Y 1e C

15



. -y I

and thus T' and IV ar- negative for Ell y In the intez-ial

(0, 1), if kI > 0. F•rthermore,

IN(O) 1-e >0, -

-e e < O,

so that 1 has a unique zero y in (0, 1) If k > 0. Figures L

and 5 illustrate the behavior of I fox, two values of k Even

for kI small, when the nonlinear portion of 1i is more significant,

t•IIs very close to linear in (0, I).

Because Ti is well-behaved, Newton'r method will converge

to y very rapidly. However, even further advantage can be taken

of the form of Ti by noting that y" satisfies the relatirn

(2)k -y -4 n(l -

Slnce the right-hand side of (5.2) depenls only on the paramet.er

9, and is Independent of the problem data, the values of the function

cn the right-hand side can be tibulated for a set. of y in (0, 1).

For a particular value of k,, table lookup could then be used to

determine a highly accurate estimate of y. With a sufficlently

large t'ble, no fteraton woqll be necessary to locate the solution

to any desired accurecyi bit !-¶nee Newton's method convezve:s rapidly,

I.!
tJ
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a small table plus a single iteratLon will locate y (and d) to

the requlre.d accuracy (e.g., reven vrilues are sufficient for an V

accuracy of 10

Case 2. Three Fut-It.on Values r

A-usuming that 6 2 0 > 61, the three equatioins specifying

the parameter:; :, np, and o f fL a Ie:

(A) '-a + -. r .rn(d. - I
2 2

S,'.. " ," n(^ }

f P.(C) -- * •e

Theo-re. 1: noto, of ge.nerality in asauming thnt 19 0. O

Uc~!i~ qr~t.y~-~A'id ~ ei~uriat awe obta in:

/^ I

4.. ( d)

b in

19



These two equations can then be mFnipulated to eliminate b, yielding:

(3-3) (:deQ + f-X 0

3 2 5 2 ir

a relatioaship which must be satisfied by , the location of the

singularity.

Consider (3.3) as a nonlinear equation in terms of the function

"F 02 22,•

where

, k• ~~= iI' • " ew "
k^

The problem to be solved then becomes that of finding a solution d

to satisfy t 2 (d) = 0.
Becausi 19 and 9 are feasible, the value of d must lie

in the intet:-ai (el , i). The function 42 has the following proper-

ties:

4- -*-• as d- e +,
42 3
2 -4k2 as d-.os;

0' > 0 for all finite d;

as d-~ +;*2 3
02-.0 as d-.m

of$ < 0 for all finite d.
*0ý: 2

20
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These reletions imply that there is a unique zero of 02

in (0e, w) if > 0. This requirement has a similar interpretation

to Case 1, i.e., the configuration of fl' fp and f3 must be as

shown in Fi.gure 6, so that the line Joining f and f must lie
ibovre the line joining f 2 and fl1

Because of its highly nonlinear behavior, 02 is unsuited for

application of the usual zero-finding techniques. The behavior of

"2 is illustrated in Figure 7. 1
To transform the problem of finding d to solve P2(d) 0 :1

into a computationally manageable form, we introduce the variables

S= d/e., so that a > 1, and 0 = with > 1; in essence, we

consider e2 to be unity and scale e3 and d accordingly. If we

multiply the equation 02 (d) = 0 by e and substitute the variables5
a and e93 we obtain:

d 2 3i' I

Let the variable y e/dl, so that 0 < y < 1 for all admis-

sible d. Takin,. exponentials of both sides of (3.4) gives:

and the value y which satisfies this relation is a zero of the

fun3 t ion:

21-
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there -

-k e8
and =e (so that 0 < < 1 for k2 >0).

Differentiating T2 with respect to y, we obtain

!7-

'12(i) = -. (I - v < 0 (y = 1 corresponds to d-• 83 +)

()-- -a + • z 0o.

I
I

-1 +

and .

2 -A

2J

T2 ( 0) o > 0n 0 threspodstora (0d ).

2i



These conditlins imply that T has a unique zero in (0, 1),
which could be locatedJ by Newton's method. T is a well-behaved

function, in contra.•t to 12D The nonlinearity in T' results from
2

the expression (1 - y/')7, where y > 1, and is the quotient 03/U2

from the original pru't kema. The value of y has been monitored during

several runs with particular barrier functions; it never exceeded

2.0, and was usuall,,, in the range (1.01, 1.5). I.ven if y were

large, the expre:,sicn ( -y/) approaches e-y as y approaches

W, and hence the fmun,,tion T 2 takes on the form of I in Case 1.
Furthermore, the value of 3( = e 3) is usually small, so that

the nonlinear component of T is even less significant.

Figures 8 and 9 illustrate the behavior of T for two sets

Of parameters (3, y). Note that even for large b and y, the

nonlinearities do not have a significant effect.

It is nut comnputationally convenient to obtain a tabulation

of '2 in o.rder to Ch'i1 an initial estimate of y, since the influences

of - wnd y nre not sieparable. However, Newton's method will

j conver-t,. fripj h1, from t reasonable starting point (for example, tLe

estimate from ,'a.;e 1.).

3 5.3. Qart Firict ton plus Logarithmic nimlarity

Ths ý :;pec.lc i function to be fitted is of the form:

'0 •,14 b+ + cE - r n(d-e).

'Jk __
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Differentiating fQ with respect to 0 gives:

f 2 8e +

aA + r

and

f 2r

Since the barrier function is decreasing at 0 O, this

same condition will be required of fQ, so that f'(O) < 0. Hence,

there must exist a minimum of f in the interval (0, A), because
Q

fQ -0 as e-) .

A stationary point of f will occur at Q* where

QI
f'(0*) 0, so that e* satisfies

A r *'!iiib + 2ca)* + 0 .

This relation leads to a quadratic equation satisfied by e*,

A' 2 ( A 2 -A "A

2c•a + (-2G ) e -r -bd 0,

S~28



with two solutions which can bet written in the alttrnative forms:

(3.6) e,0

(5.) .- •7', - b "- • +•Y@2 ,+ O

We now exanitne the properties of these two solutions in order

to determine which will quali•y as a suitable minimtun, I.e., lie in

the interval (0, •). Since C'(O) < 0 and d > 0, the expression

bd + r is negative. Therefore, the s'gn of the tenr 8'^(r )

Is opposite to the sign of c. Consider two cases:

case A c > 0 (the quadratic term in fQ hes a Dosltive coeffiulent).

The quantity (I + 2cd)^ + 8r•? involved in formnula (5.6) for

f3') mutt be positive, so that two real roots exist. In formula

(5.5) for e*, the quantity wver the squa'e root h! tiiagnitude less

than r2 ) - )l, since &c(r + bd) Is negattve. The expression
A'

2cis positive since > 0, ' > 0, P < 0, and, therefore, bot

roots are positive. From formula (3.6) ror e*, we note that the

quinntity under the square root exceeds b i 2C11 in magnitude.

'9
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The value of e* corresponding to the positive square root

satisfies:

+ ~ 46

and hence is unacceptable.

The value of e* for the negative square root satisfies:

*-< 2c • + 2c

46 AA

Since b + 2cd is positive, and c is positive, it follows

that > -(b/2c), and e* is an acceptable choice for a minimum.

Here, the root corresponding to the positive square root

satisfies:

+ 4c 2c

< A

Since • + 2 < 0, d must be less than -(S/2•); thus,

e* > 8, and is unaccep+able.

30
* .4



The solution corresponding to the negative square root

satisfies:

and is acceptable.

Case< 0 (the coefficient of the guadratic term in fQ s

negative).

The quantity under the square root must be positive since
A AA

a < 0, r + bd < 0, and thus there are two real roots. In formula

(3.5) for e*, the quantity under the square root exceeds 2c• -

in magnitude, and hence there must be one positive and one negative

root. Because of the sign reversal caused by division by c, the

positive square root corresponds to a value e* < 0, and ca,, be

eliminated from consideration. The only positive e* can be written

aAs2

-2c + AS+ 2 a)2 + 8r41- -1,

The quantity under the square root has magnitude less then

+ 2,Adj so that e* satisfies:

-2c-b-2cd 40
G* < d.e, < •1 S'l41 C'1

31
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For Cases A and B, then, assuming that f'(O) < 0, the solution

e* corresponding to the negative square rool in formul. a .5) or

(3.6) will be taken as the minimum of fQ.

In order to specify the function fQ, four independent pieces

of information are required about the behavior of the function to be

fitted along the search direction; f, will therefore be used in

circumstances where a cubic fit would normally be carried out to

minimize a general function. Figure 10 illustrates a barrier function

and its approximations by the function fQ and a cubic, both using

the same data. The more accurate modeling of the barrier function

by the special function is quite noticeable.

The special function fQ will be fitted with the same set of

data used by a typical cubic line search, namely, two function values

and the corresponding two gradients. As in the previous discussion,

fi denotes the function value at ei, ard g, is the corresponding 4
value of the projected gradient.

The four unknown parameters of f. - a, b. c, and a--must

be solved for in terms of the known values. Assuming that e2 > 0,0

the equations specifying f are: )

(• - el)
R() f a + ý8 + cq 2 -r n(a - e)

(B) 11 + 21%2 + -

(C) a b( +ce2  r n(a -)
22 2 2

A A

(DE S 2)

32



r =.001

Ii

t1

Quadratic plus
Log f it Barrier

Function

0

Cubici,'•
Fit "" " - -

Figure 10

0,,



There is no loss of generality in assuming that e 0=, so

that from (A) and (B) we obtain expressions for the coefficients

a and In terms of d:

r1 + r In(d)

Substituting for b in equation (D), we obtain an expression
A A

for the parameter c in terms of d:

:2 d- 1  d - 02

These three expressions for a, b, and c can then be substituted

into equation (C), to obtain the following:

(3.7) In( -- - In(- ) + - . 1
2 a _ ed d- 2

t r "(

If a value d, the location of the singularity, can be

found which satisfies (3.7), the values a, b, c, and e* can then

be computed from the previously derived relationships.



Consider (5.7) as a nonlinear equation in terms of the function

4D e 2 +ar (i"

where

ek (gl + 92) (- ( 2 -f )

The problem to be solved then becomes that of finding a solution d

to satisfy

(3.8) 0 (d) - 0.

If we introduce the variable z 1 - e2 /d (d - e2 )/d,

where 0 < z < 1, we can then write the equation 0 (d) v 0 in

terms of the variable z as:

A The nonlinear equation (3.9) could be solved for a suitable

z, but the function represented is extremely ill-behaved. As z - 0,

the logarithm term is approaching (-w), while th6 reciprocal term is

unsuitable for purposes of computation.
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However, the relationship (3.9) can be transformed into an

equivalent form that is comaputationally reasonable. A further

change of variable is made:

v -n(z) ,

so that z = eV, and e -V note that v will be nonpositive

since O< z <.

When written in terms of v, the relation (3.9) becomes:

v + I (ev - ev) =k
23-

Since

sinh(v) (ev . e-V)62

- I the final result is:

v - sinh(v) k .

SI
The value v that satisfies this relation is a zero of the function

T3' where

S(v) + sinh(v) - v.

- - .-



Differentiating T with respect to v, we obtain:

cosh(v) - I

Ttsinh(v),

so that the function • has the following properties:
3

T3(0)= k ( v 0 corresponds to d-* I
Lim T ~(v)

T > 0 for v < 0;

!w;(o) oj

v 0;
Sllmur i' (v) =•

< 0 for v < 0.

These conditions imply that T has a unique zero in (- 0 , O)
3

if k > 0. This requirement means that the average of the gradients
5

at e1 and 82 must exceed the slope of the straight line joinirg

f and f If the function to be approximated were quadratic, the

1 2'



average of the slopes at e and rd Irould exactly equal the slope

of' the line Joinaing fl and fP2 . The condition k > 0 thus

implies that the function to be approximated is rising more rapidly

thar, a quadratic.

Figure ii illustrates the behavior of "

Although the function T3 is unbcianded below as v -. -

(i.e., when z -4 0, or d -, e2 +), this property does not cause any

computational difficulties in the current context. The unbounded

behavior of Ti occurs when the estimated value of the singularity

is very close to e20 if a tolerance, say e, is specified such that
any estimate of is required to satisfy >_ e2/(i - e), then the

variable z is bounded below by e, and the variable v is bounded

below by -M, M > 0, where M = - An(F). If values of v are

restrict3d to the range (-M, 0), the region where T3 is unbounded I
is eliminated. If k is very large, it is possible that the value

3
T (-M) will not be negative for the particular value of M chosen,

and hence no zero of T will exist in (-M, 0). Under these

circumstances, we simply accept v = -M as the solution, so that

We can easily solve the equation '3(v) 0 with Newton's

"method, considering the following properties of T3 Since V' < 0
3' 3

throughout the interval of interest, if the starting point is chosen

so that T < 0, the Newton iterates will undershoot the solution, and

cannot diverge. Furthermore, the condition T (v) = 0 can be written as:

383
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k3 -v -sinh(v),

and the expression .on the right-hand side is independent of the

problem data. Hence, the function v - sinh(v) can be tabulated

for v in the range (-M, 0), and by table lookup using the value

k3P a highly accurate initial estimate of v, with T. < 0, can be

obtained.

The Newton procedure converges extremely rapidly except when

the value of v is close to zero, because T'(0) = 0. This situation

is quite unlikely because the estimated singularity would then be

much larger than e For completeness, however, we note that the

problem can be solved successfully even for very small v. The

function T (v) can be written:

'k(v) k + sinh(v) -v

-- k3 + (eV -eV) -v

2 3 v2 v3

k5 + +(+1 + v+ 6 + v

1 +2v3 V52
3 26 120

Sk• + v3 + O(v5).

i40
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For small v, the equation %(v) 0 thus essentially becomes

the condition

k + 0,

1/3
with explicit solution v* (-6k . Because we are ignoring

negative higher-order terms, this value v* will be to the left

of the correct v, and Newton's method cannot diverge. However,

the estimate v* is so accurate that no iteration at all is necessary

to obtain an acceptable solution.

4. lgpntqion
'I !I

The safeguarded linear searches based on quadratic or cubic

interpolation (of. Gill and Murray, 1974) have been modified for

use with the logarithmic barrier function by allowing interpolation

with the special functions described. Several rather complicated

modifications are required in order to create an efficient algorithm.

If no constraint is decreasing along the current search direction,

or if no constraint approaches zero until sufficiontly far beyond

the starting point, then the singularity introduced to preserve

febsibil.ty will have no significant effect on the location of the

minimum, and the usual linear search procedure should be followed.

There is no computationally reasonable way ýo determine I po

whether these conditions exist because the constraints and objective

function may be highly nonlinear, and the effort expended to compare

........................................
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the location of the nearest constraint zero with the prediction of

the barrier function's minimum might be better used directly to

minimize the barrier function. The procedure to be described seems

to be a satisfactory compromise between excessive safeguardr and

unwarranted assumptions of linearity or smoothness.

4.1. I

rhe choice of the first step along the search direction at

which the function is to be evaluated is affected by the possibility

that a constraint may become nonpositive if the usual choice of step

for the algorithm is taken. For example, with a Newton-type method,

the initial step taken along the search direction is unity) for a

quasi-Newton method, there is normally a procedure associated with

the method for choosing the initial step. Let a denote the

initial step that would be taken for a particular unconstrained

algorithm if used to minimize the barrier function along the given

direction. If a constraint might become zero at a < au clearly a

•* Ishorter step than a should be taken. One possible method for
u

determining the initial step is to find a highly accurate estimate

of the step to the nearest zero of a constraint, say a, and test

whether a < a . A subroutine is available that will, with high

reliability, locate the zero of the nearest constraint by use of a

combination of safeguarded zero-finding techniques. However, locating
A

a, generally requires several constraint evaluations, and it may

turn out that a exceeds a or is very close to a , so that these
U u

l12



evaluations were essentially redundant. One might think of using

the zero-finding technique until the zero has been shown conclusively

to lie beyond a ' but this approach involves quite complicated house-

keeping, and, more significantly, may still require constraint calcu-

lations that do not advance the computation.

(0)With the "compromise" algorithm, the initial step a to be

taken along the search direction, p, is computed as follows:

1. Compute au, the step normally taken by the unconstrained method;

2. Compute the gradient of each constraint along p, i.e.,
. fj Taip, where a1  is the gradient of c For all i such that

this gradient is negative, i.e., the i-th constraint is locally

decreasing along p, compute ai = "c/Tp the predicted Newton

step to the zero of ai. Find m rain (ai), and let I be the

index for which 7 a,. In other words, & is the smallest

positive first-order step to a constraint zero. If no constraint

is decreasing along p, 8et the initial step a(') to (I and
U'

skip the remaining logic.

3. Estimate b', the step to the minimum of the barrier function

along p, which satisfies:

T £r al(x + Oab)

Sp (g(x + ap)- ix + ) 0
i-1 b" + %p)

where g(.) Ls the gr'odient of F. The relationship (4.1)

can be used to obtain a orude estimate of ab, if two approxi-

mattons are made. First, we assu'ne that only the influence
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of the constraint Iis significant in the location of C

tliia assumption is based on the idea that for small r, only

te singularity along p eoseest to the starting point affects

the local behavior of the barrier function. Second, it is A

assumed that the gradients of the objective function and T-th

constraint remain fixed locally. Under these conditions -

ignoring second-order terms, and all but the I-th constraint --

(4.1) becomes:.

T 1T
gp T

01 + "b a p

so that

gT T

Since

alp

the estimate of a is given by:

ab T a
gp

\. I'44



If pTg > 0, i.e., p is not a descent direction for the objective

function, then the assumption that only one constraint will have

an effect, confined to the neighborhood of the singularity, is

not justified, and we set = y' where 0 < y < 1.

4. If exceeds %a let P) be a otherwise, P).= .uU b

In this way, the initial ste'p can be chosen based on the

estimated decrease of the constraints if it seems that their effect

will be significant in the location of the minimum of the barrier

function.

For each step to be taken, the set of constraints is evaluated

in order to assure that feasibility is never violated.

If any constraint, say the J-th, is non-positive at x + a(),

the secant step to the predicted zero of that constraint is computed,

and the next estimate of the location of the minimum is computed as

described above in Step (75), where the secant step a given by:

a .(k) c, (x) i

4.x + c(k . c - ) '

is used as a. This procedurce is subject to the safeguarding require-

ment that the constraints not be evaluated at points that are too

close together (see Gill and Murray, 1974; Brent, 1973, for a discus-

sion of this aspect of safeguarded linear searches).

J



4.3. Normal Iteration of Modified Linear Search

The special functions are fitted during the iteration if a

flag has been set to 'true'. The flag is set: (1) when the initial

(0) was %, implying that the influence of some constraint is

predicted to be significant in locating the minimum) and (2) when

any negative constraint value is encountered during execution of the

linear search, since it has then been demonstrated that the current

iterate is in a region influenced by the singularities.

The special functions ere fitted iteratively, using the same

criteria for replacing points as the usual linear searches, until the

particular convergence criteria are satisfied. There are a few

subtle difficulties in that for small r. it may be difficult to

locate the minimum because the distance from the singularity to the

minimum may be less than the spacing required for constraint evalua-

tions. However, a careful regulation of the tolerances involved, so

that impossible accuracy is not sought, will assure that the process

will work ra desired.

4.4. Conmarison with Usual Linear Searches

In order to determine whether the special linear searches are

worthwhile, numerical experiments were carried out for several

barrier functions, with varying values of r, the barrier parameter,

and 1, the linear search convergence parameter. For the cubic

case where gradients are evaluated at every point, the linear search

usually terminates when

y4
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th JRx + *1< Ii IiO)

where (.) is the projected gradient of the function to be mini-

mizod; in the quadratic case, the linear search is usually terminated

when the minimurn of P is known to be bracketed in the interval

to, b] and

S+ m (x + a < i W I
a a

i.e., when the linearized approximation to the gradient at x + Op

natisfies the oame test as g(x + Ce) in the cubic case. There

are other occasions when the normal linear search procedure will ter-

wirato, involving sufficient smallness of the interval of uncertainty,

closeness to the maximum permitted step, etc.

Numerous runs (about 40) were made. For both the special

Punctiois and the usual polynomials, the same initial step was taken,

ond the same procedure was followed for determining the next point

iT a constraint became negative during the line search iteration.

Hence, the only difference was in the use of the minima of special

funotioms, rather than of cubic or quadratic polynomials, to yield

the next point at which the function and constraints are to be evalu-

nLed as the linear search proceeds. In every case, use of a special

l'iction reduced the number of function and constraint evaluations;

thc. reduction became progressively more significant as the value of

i, was reduced. The reduction in the number of function and constraint

vNl
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evaluations ranged from 7% to 20% when a Newton-type algorithm was

used to carry out the unconstrained minimization, ard from 12% to

24% for a quasi-Newton algorithm; thusp there was clear improvement

with the approximation by special functions.

5.Cocuin

The extra work required in the linear search procedure to fit

these special functions is small. Some of the housekeeping (checking

for feasibility, etc.) must be carried out with barrier functions

regardless of whether special functions are used or not. The formu-

lations presented here allow calculation of the minimum of the fitted

functions with the same information required to fit the usual poly-

nomials. The singularity must be located through an iteration, but

because of the special form of the iteration functions, we are able

to obtain a highly accurate starting guess; in fact, in two of the

three cases, the solution could be obtained from tables. The itera-

tion functions are well-behaved, and Newton's method will usually

converge to the desired accuracy within two iterations. Each itera-

tion to locate the singularity requires evaluation of a transcendental

function, but the subsequent reduction in the number of function and

constraint evaluations required to locate a satisfactory approximation

to the minimum of the barrier function seems ample Justification for

use of the special linear searches designed to minimize barrier functions.

I48
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EFFICIENT LINEAR SEARCH ALGORITHMS FMR THE

WOGARI [HMIC BARRIER FUNCTION

by

Walter Murray and Margaret H. Wright

Technical Report SOL 76-18

Linear search algorithms are developed for use when minimiz-

ing logarithmic barrier functions, whose one-dimensional behavior

is In general modeled poorly by the low-order polynomial approxima-

tions of standard linear search procedures. The new methods are

based on rpecial approximating functions with a logarithmic singula-

rity, and are designed to utilize the same information as procedures

based on special approximating functions with a logarithmic singula-

rity, and are designed to utilize the same information as procedures

of the ipecial approximating functions depend nonlinearly on the

available date, the determination of the parameters requires little

additional work in comparison with polynomial fits. Use of the

special upproximating functions has led to a significant improve-

ment in efficiency when minimizing logarithmic barrier functions,

where efficiency is measured by the number of function (or function

anrid gradient) evaulations required for termination of each linear

search.
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